Sirt1 Inhibits Atrial Fibrosis by Downregulating the Expression of the Transforming Growth Factor-β1/Smad Pathway

Sirt1通过下调转化生长因子-β1/Smad通路的表达来抑制心房纤维化

阅读:20
作者:Yiqi Chen, Shuting Zhao, Hua Xiao

Background

Atrial fibrosis is an important factor leading to atrial fibrillation, and the transforming growth factor-β1/Smad pathway is a key factor in inducing atrial fibrosis. Sirt1 is a member of the histone deacetylase (sirtuin) family, and recent studies have proven its cardioprotective effects. Objectives: This study explored the effect of Sirt1 on atrial fibrosis through the transforming growth factor-β1/Smad pathway.

Conclusions

These findings indicate that Sirt1 inhibits atrial fibrosis by downregulating the expression of the transforming growth factor-β1/Smad pathway, and provide potential targets for the treatment of atrial fibrillation.

Methods

We analyzed human right atrial appendage tissues and explored the relationship between Sirt1 and atrial fibrosis at the morphological, functional and molecular levels by Masson trichrome staining, immunofluorescence, real-time quantitative polymerase chain reaction and Western blot analysis. Rat atrial fibroblasts were extracted and treated by the Sirt1 agonist resveratrol, inhibitor sirtinol, and recombinant human transforming growth factor-β1 protein. The expression levels of related proteins were detected by Western blot, and the effect on the migration of atrial fibroblasts was detected by wound healing assay.

Results

We found that the expression of Sirt1 was reduced in the right atrial appendage tissues of patients with atrial fibrillation, and the degree of fibrosis was increased. In atrial fibroblasts, the activation of Sirt1 could inhibit the expression of transforming growth factor-β1/Smad and reduce the development of fibrosis, while inhibiting Sirt1 reduced its inhibitory effect on the transforming growth factor-β1/Smad pathway. Conclusions: These findings indicate that Sirt1 inhibits atrial fibrosis by downregulating the expression of the transforming growth factor-β1/Smad pathway, and provide potential targets for the treatment of atrial fibrillation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。