Elucidation of pathological mechanism caused by human disease mutation in CaMKIIβ

CaMKIIβ 人类疾病突变引起的病理机制阐明

阅读:7
作者:Hiroki Mutoh, Kazushi Aoto, Takehiro Miyazaki, Atsuo Fukuda, Hirotomo Saitsu

Abstract

Recently, we have identified CaMKIIα and CaMKIIβ mutations in patients with neurodevelopmental disorders by whole exome sequencing study. Most CaMKII mutants have increased phosphorylation of Thr286/287, which induces autonomous activity of CaMKII, using cell culture experiments. In this study, we explored the pathological mechanism of motor dysfunction observed exclusively in a patient with Pro213Leu mutation in CaMKIIβ using a mouse model of the human disease. The homozygous CaMKIIβ Pro213Leu knockin mice showed age-dependent motor dysfunction and growth failure from 2 weeks after birth. In the cerebellum, the mutation did not alter the mRNA transcript level, but the CaMKIIβ protein level was dramatically decreased. Furthermore, in contrast to previous result from cell culture, Thr287 phosphorylation of CaMKIIβ was also reduced. CaMKIIβ Pro213Leu knockin mice showed similar motor dysfunction as CaMKIIβ knockout mice, newly providing evidence for a loss of function rather than a gain of function. Our disease model mouse showed similar phenotypes of the patient, except for epileptic seizures. We clearly demonstrated that the pathological mechanism is a reduction of mutant CaMKIIβ in the brain, and the physiological aspects of mutation were greatly different between in vivo and cell culture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。