Unraveling the Detoxification Mechanism of 2,4-Dichlorophenol by Marine-Derived Mesophotic Symbiotic Fungi Isolated from Marine Invertebrates

揭示从海洋无脊椎动物中分离的海洋中光共生真菌对 2,4-二氯苯酚的解毒机制

阅读:5
作者:Efstratios Nikolaivits, Andreas Agrafiotis, Aikaterini Termentzi, Kyriaki Machera, Géraldine Le Goff, Pedro Álvarez, Suchana Chavanich, Yehuda Benayahu, Jamal Ouazzani, Nikolas Fokialakis, Evangelos Topakas

Abstract

Chlorophenols (CPs) are environmental pollutants that are produced through various anthropogenic activities and introduced in the environment. Living organisms, including humans, are exposed to these toxic xenobiotics and suffer from adverse health effects. More specifically, 2,4-dichlorophenol (2,4-DCP) is released in high amounts in the environment and has been listed as a priority pollutant by the US Environmental Protection Agency. Bioremediation has been proposed as a sustainable alternative to conventional remediation methods for the detoxification of phenolic compounds. In this work, we studied the potential of fungal strains isolated as symbionts of marine invertebrates from the underexplored mesophotic coral ecosystems. Hence, the unspecific metabolic pathways of these fungal strains are being explored in the present study, using the powerful analytical capabilities of a UHPLC-HRMS/MS. The newly identified 2,4-DCP metabolites add significantly to the knowledge of the transformation of such pollutants by fungi, since such reports are scarce.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。