CD163+ macrophages restrain vascular calcification, promoting the development of high-risk plaque

CD163+巨噬细胞抑制血管钙化,促进高危斑块的发展

阅读:6
作者:Atsushi Sakamoto, Rika Kawakami, Masayuki Mori, Liang Guo, Ka Hyun Paek, Jose Verdezoto Mosquera, Anne Cornelissen, Saikat Kumar B Ghosh, Kenji Kawai, Takao Konishi, Raquel Fernandez, Daniela T Fuller, Weili Xu, Aimee E Vozenilek, Yu Sato, Hiroyuki Jinnouchi, Sho Torii, Adam W Turner, Hirokuni Akaho

Abstract

Vascular calcification (VC) is concomitant with atherosclerosis, yet it remains uncertain why rupture-prone high-risk plaques do not typically show extensive calcification. Intraplaque hemorrhage (IPH) deposits erythrocyte-derived cholesterol, enlarging the necrotic core and promoting high-risk plaque development. Pro-atherogenic CD163+ alternative macrophages engulf hemoglobin:haptoglobin (HH) complexes at IPH sites. However, their role in VC has never been examined to our knowledge. Here we show, in human arteries, the distribution of CD163+ macrophages correlated inversely with VC. In vitro experiments using vascular smooth muscle cells (VSMCs) cultured with HH-exposed human macrophage - M(Hb) - supernatant reduced calcification, while arteries from ApoE-/- CD163-/- mice showed greater VC. M(Hb) supernatant-exposed VSMCs showed activated NF-κB, while blocking NF-κB attenuated the anticalcific effect of M(Hb) on VSMCs. CD163+ macrophages altered VC through NF-κB-induced transcription of hyaluronan synthase (HAS), an enzyme that catalyzes the formation of the extracellular matrix glycosaminoglycan, hyaluronan, within VSMCs. M(Hb) supernatants enhanced HAS production in VSMCs, while knocking down HAS attenuated its anticalcific effect. NF-κB blockade in ApoE-/- mice reduced hyaluronan and increased VC. In human arteries, hyaluronan and HAS were increased in areas of CD163+ macrophage presence. Our findings highlight an important mechanism by which CD163+ macrophages inhibit VC through NF-κB-induced HAS augmentation and thus promote the high-risk plaque development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。