Glucuronidation of the second-generation antipsychotic clozapine and its active metabolite N-desmethylclozapine. Potential importance of the UGT1A1 A(TA)₇TAA and UGT1A4 L48V polymorphisms

第二代抗精神病药氯氮平及其活性代谢物 N-去甲基氯氮平的葡萄糖醛酸化。UGT1A1 A(TA)₇TAA 和 UGT1A4 L48V 多态性的潜在重要性

阅读:5
作者:Kathryn K Erickson-Ridout, Dongxiao Sun, Philip Lazarus

Conclusion

These data suggest that the UGT1A1*28 and UGT1A4*3 alleles contribute significantly to the interindividual variability in CLZ and dmCLZ metabolism.

Methods

Cell lines overexpressing wild-type or variant uridine diphosphate-glucuronosyltransferase (UGT) enzymes were used to determine which UGTs show activity against CLZ and its major active metabolite N-desmethylclozapine (dmCLZ). Human liver microsomes (HLM) were used to compare hepatic glucuronidation activity against the UGT genotype.

Results

Several UGTs including 1A1 and 1A4 were active against CLZ; only UGT1A4 showed activity against dmCLZ. UGT1A1 showed a 2.1-fold (P <0.0001) higher V(max)/K(M) for formation of the CLZ-N⁺-glucuronide than UGT1A4; UGT1A4 was the only UGT for which CLZ-5-N-glucuronide kinetics could be determined. The UGT1A4(24Pro/48Val) variant showed a 5.2-, 2.0-, and 3.4-fold (P < 0.0001 for all) higher V(max)/K(M) for the formation of CLZ-5-N-glucuronide, CLZ-N⁺-glucuronide, and dmCLZ-5-N-glucuronide, respectively, as compared with that of wild-type UGT1A4(24Pro/48Leu). There was a 37% (P< 0.05) decrease in the rate of CLZ-N⁺-glucuronide formation in HLM with the UGT1A1 (*28/*28)/UGT1A4 (*1/*1) genotype, and a 2.2- and 1.8-fold (P < 0.05 for both) increase in the formation of CLZ-5-N-glucuronide and CLZ-N⁺-glucuronide in UGT1A1 (*1/*1)/UGT1A4 (*3/*3) HLM compared with UGT1A1 (*1/*1)/UGT1A4 (*1/*1) HLM. The UGT1A1*28 allele was a significant (P = 0.045) predictor of CLZ-N⁺-glucuronide formation; the UGT1A4*3 allele was a significant (P < 0.0001) predictor of CLZ-5-N-glucuronide and dmCLZ-glucuronide formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。