Intestinal microbiota modulates neuroinflammatory response and brain injury after neonatal hypoxia-ischemia

肠道微生物群调节新生儿缺氧缺血后的神经炎症反应和脑损伤

阅读:5
作者:Alexander Drobyshevsky, Sylvia Synowiec, Ivan Goussakov, Rafael Fabres, Jing Lu, Michael Caplan

Abstract

Premature infants lack a normal intestinal microbial community and also at risk of perinatal hypoxic-ischemic (HI) brain injury, which is considered to be one of the major factors for motor, sensory, and cognitive deficits. We hypothesized that neonatal gut microbiota composition modulated the immune reaction and severity of neonatal H-I brain injury. Neonatal C57BL/6J mouse pups were exposed to H-I protocol consisting of permanent left carotid artery ligation, followed by 8% hypoxia for 60 min. Microbial manipulation groups included 1) antibiotic treatment, E18 (maternal) to P5; 2) antibiotic treatment E18 to P5 + E. coli gavage; 3) antibiotic treatment E18 to P5 + B. infantis gavage; and 4) saline to pups with dams getting fresh water. The extent of brain injury and recovery was measured on MRI. Edematous injury volume was significantly higher in E. coli group than that in B. infantis group and in fresh water group. Gene expression in brains of pro-inflammatory cytokines (IL1β, IL6, IL2, TNF-α and toll-like receptors 2-6) were elevated to a greater extent in the E. coli group at P10, no injury, and at P13, 72 hours after H-I relative to sham control and B. infantis groups. Significant effects of microbiome and brain injury and interaction of these factors were found in abundance of major phyla. The neuroinflammatory response and brain injury after neonatal hypoxia-ischemia are affected by intestinal microbiota, providing opportunities for therapeutic intervention through targeting the early colonization and development of the gut microbiota.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。