Establishment of patient-derived organoids for guiding personalized therapies in breast cancer patients

建立患者来源的类器官以指导乳腺癌患者的个性化治疗

阅读:5
作者:Huizi Wu, Weiwei Wang, Yinbin Zhang, Yinxi Chen, Changyou Shan, Jia Li, Yiwei Jia, Chaofan Li, Chong Du, Yifan Cai, Yu Zhang, Shuqun Zhang, Fei Wu

Abstract

Breast cancer has become the most commonly diagnosed cancer. The intra- and interpatient heterogeneity induced a considerable variation in treatment efficacy. There is an urgent requirement for preclinical models to anticipate the effectiveness of individualized drug responses. Patient-derived organoids (PDOs) can accurately recapitulate the architecture and biological characteristics of the origin tumor, making them a promising model that can overtake many limitations of cell lines and PDXs. However, it is still unclear whether PDOs-based drug testing can benefit breast cancer patients, particularly those with tumor recurrence or treatment resistance. Fresh tumor samples were surgically resected for organoid culture. Primary tumor samples and PDOs were subsequently subjected to H&E staining, immunohistochemical (IHC) analysis, and whole-exome sequencing (WES) to make comparisons. Drug sensitivity tests were performed to evaluate the feasibility of this model for predicting patient drug response in clinical practice. We established 75 patient-derived breast cancer organoid models. The results of H&E staining, IHC, and WES revealed that PDOs inherited the histologic and genetic characteristics of their parental tumor tissues. The PDOs successfully predicted the patient's drug response, and most cases exhibited consistency between PDOs' drug susceptibility test results and the clinical response of the matched patient. We conclude that the breast cancer organoids platform can be a potential preclinical tool used for the selection of effective drugs and guided personalized therapies for patients with advanced breast cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。