Recycling of modified H2A-H2B provides short-term memory of chromatin states

修饰的 H2A-H2B 的回收提供了染色质状态的短期记忆

阅读:5
作者:Valentin Flury, Nazaret Reverón-Gómez, Nicolas Alcaraz, Kathleen R Stewart-Morgan, Alice Wenger, Robert J Klose, Anja Groth

Abstract

Chromatin landscapes are disrupted during DNA replication and must be restored faithfully to maintain genome regulation and cell identity. The histone H3-H4 modification landscape is restored by parental histone recycling and modification of new histones. How DNA replication impacts on histone H2A-H2B is currently unknown. Here, we measure H2A-H2B modifications and H2A.Z during DNA replication and across the cell cycle using quantitative genomics. We show that H2AK119ub1, H2BK120ub1, and H2A.Z are recycled accurately during DNA replication. Modified H2A-H2B are segregated symmetrically to daughter strands via POLA1 on the lagging strand, but independent of H3-H4 recycling. Post-replication, H2A-H2B modification and variant landscapes are quickly restored, and H2AK119ub1 guides accurate restoration of H3K27me3. This work reveals epigenetic transmission of parental H2A-H2B during DNA replication and identifies cross talk between H3-H4 and H2A-H2B modifications in epigenome propagation. We propose that rapid short-term memory of recycled H2A-H2B modifications facilitates restoration of stable H3-H4 chromatin states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。