Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions

流门控血管生成开关的机制:细胞基质和细胞间连接处的早期信号事件

阅读:6
作者:Vernella Vickerman, Roger D Kamm

Abstract

A bias towards angiogenesis from the venous circulation has long been known, but its cause remains unclear. Here we explore the possibility that high interstitial pressure in tumors and the resultant net filtration pressure gradient that would induce flow from the interstitium into the venous circulation or lymphatics could also be an important mechanical regulator of angiogenesis. The objective of this study was to test the hypothesis that basal-to-apical (B-A) transendothelial flow promotes angiogenesis and to investigate potential mechanisms. Macro- and microvascular endothelial monolayers were cultured on type I collagen gels in a microfluidic cell culture device and subjected to apical-to-basal (A-B) and B-A transendothelial flows. Samples were perfusion fixed and analyzed for morphological responses, localization and degree of phosphorylation of certain signaling proteins. Application of B-A, but not A-B flow, to cultured endothelial monolayers was found to promote capillary morphogenesis and resulted in distinct localization patterns of VE-cadherin and increased FAK phosphorylation. These results suggest that B-A flow triggers the transition of vascular endothelial cells from a quiescent to invasive phenotype and that the flow-mediated response involves signaling at cell-cell and cell-matrix interfaces. These results support the hypothesis that transendothelial pressure gradients resulting in B-A flow promotes sprouting angiogenesis and are consistent with early observations that tumor angiogenesis occurs from the venous side of the circulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。