SRSF7 and SRSF3 depend on RNA sequencing motifs and secondary structures to regulate Microprocessor

SRSF7 和 SRSF3 依赖 RNA 测序基序和二级结构来调节微处理器

阅读:6
作者:Minh Ngoc Le, Trung Duc Nguyen, Tuan Anh Nguyen

Abstract

Human Microprocessor cleaves pri-miRNAs to initiate miRNA biogenesis. The accuracy and efficiency of Microprocessor cleavage ensure appropriate miRNA sequence and expression and thus its proper gene regulation. However, Microprocessor cleaves many pri-miRNAs incorrectly, so it requires assistance from many cofactors. For example, SRSF3 enhances Microprocessor cleavage by interacting with the CNNC motif in pri-miRNAs. However, whether SRSF3 can function with other motifs and/or requires the motifs in a certain secondary structure is unknown. In addition, the function of SRSF7 (a paralog of SRSF3) in miRNA biogenesis still needs to be discovered. Here, we demonstrated that SRSF7 could stimulate Microprocessor cleavage. In addition, by conducting high-throughput pri-miRNA cleavage assays for Microprocessor and SRSF7 or SRSF3, we demonstrated that SRSF7 and SRSF3 function with the CRC and CNNC motifs, adopting certain secondary structures. In addition, SRSF7 and SRSF3 affect the Microprocessor cleavage sites in human cells. Our findings demonstrate the roles of SRSF7 in miRNA biogenesis and provide a comprehensive view of the molecular mechanism of SRSF7 and SRSF3 in enhancing Microprocessor cleavage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。