Autophagic Modulation by Trehalose Reduces Accumulation of TDP-43 in a Cell Model of Amyotrophic Lateral Sclerosis via TFEB Activation

海藻糖通过自噬调节通过激活 TFEB 减少肌萎缩侧索硬化症细胞模型中 TDP-43 的积累

阅读:6
作者:Ying Wang, Feng-Tao Liu, Yi-Xuan Wang, Rong-Yuan Guan, Chen Chen, Da-Ke Li, Lu-Lu Bu, Jie Song, Yu-Jie Yang, Yi Dong, Yan Chen, Jian Wang

Abstract

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease characterized by the formation of protein inclusion and progressive loss of motor neurons, finally leading to muscle weakness and respiratory failure. So far, the effective drugs for ALS are yet to be developed. Impairment of transcriptional activator transcription factor EB (TFEB) has been demonstrated as a key element in the pathogenesis of ALS. Trehalose is an mechanistic target of rapamycin-independent inducer for autophagy, which showed autophagic activation and neuroprotective effect in a variety of neurodegenerative diseases. The mechanism for trehalose-induced autophagy enhancement is not clear, and its therapeutic effect on TAR DNA-binding protein-43 (TDP-43) proteinopathies has been poorly investigated. Here we examined the effect of trehalose on TDP-43 clearance in a cell culture model and identified that trehalose treatment significantly reduced TDP-43 accumulation in vitro through modulation of the autophagic degradation pathway. Further studies revealed that activation of TFEB induced by trehalose was responsible for the enhancement of autophagy and clearance of TDP-43 level. These results gave us the notion that TFEB is a central regular in trehalose-mediated autophagic clearance of TDP-43 aggregates, representing an important step forward in the treatment of TDP-43 related ALS diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。