Involvement of the ghrelin system in the maintenance of oxycodone self-administration: converging evidence from endocrine, pharmacologic and transgenic approaches

生长素释放肽系统参与维持羟可酮自我给药:来自内分泌、药理和转基因方法的综合证据

阅读:7
作者:Zhi-Bing You, Eliot L Gardner, Ewa Galaj, Allamar R Moore, Tristram Buck, Chloe J Jordan, Bree A Humburg, Guo-Hua Bi, Zheng-Xiong Xi, Lorenzo Leggio

Abstract

Ghrelin, an orexigenic hormone, has emerged as a critical biological substrate implicated in drug reward. However, the response of the ghrelin system to opioid-motivated behaviors and the role of ghrelin in oxycodone self-administration remain to be studied. Here, we investigated the reciprocal interactions between the endogenous ghrelin system and oxycodone self-administration behaviors in rats and the role of the ghrelin system in brain stimulation reward (BSR) driven by optogenetic stimulation of midbrain reward circuits in mice. Oxycodone self-administration significantly elevated plasma ghrelin, des-acyl ghrelin and growth hormone and showed no effect on plasma LEAP2, a newly identified endogenous ghrelin receptor (GHS-R1a) antagonist. Oxycodone self-administration produced significant decreases in plasma gastric inhibitory polypeptide and insulin. Acquisition of oxycodone self-administration significantly upregulated GHS-R1a mRNA levels in dopamine neurons in the ventral tegmental area (VTA), a brain region critical in drug reward. Pretreatment with JMV2959, a selective GHS-R1a antagonist, dose-dependently reduced oxycodone self-administration and decreased the breakpoint for oxycodone under a progressive ratio reinforcement in Long-Evans rats. The inhibitory effects of JMV2959 on oxycodone self-administration is selectively mediated by GHS-R1a as JMV2959 showed a similar effect in Wistar wildtype but not in GHS-R knockout rats. JMV2959 pretreatment significantly inhibited BSR driven by selective stimulation of VTA dopamine neurons, but not by stimulation of striatal GABA neurons projecting to the VTA in mice. These findings suggest that elevation of ghrelin signaling by oxycodone or oxycodone-associated stimuli is a causal process by which oxycodone motivates oxycodone drug-taking and targeting the ghrelin system may be a viable treatment approach for opioid use disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。