Overexpression of mitogen-activated protein kinase phosphatase-1 in endothelial cells reduces blood-brain barrier injury in a mouse model of ischemic stroke

内皮细胞中丝裂原活化蛋白激酶磷酸酶-1的过度表达可减轻缺血性中风小鼠模型中的血脑屏障损伤

阅读:6
作者:Xiu-De Qin, Tai-Qin Yang, Jing-Hui Zeng, Hao-Bin Cai, Shao-Hua Qi, Jian-Jun Jiang, Ying Cheng, Long-Sheng Xu, Fan Bu

Abstract

Ischemic stroke can cause blood-brain barrier (BBB) injury, which worsens brain damage induced by stroke. Abnormal expression of tight junction proteins in endothelial cells (ECs) can increase intracellular space and BBB leakage. Selective inhibition of mitogen-activated protein kinase, the negative regulatory substrate of mitogen-activated protein kinase phosphatase (MKP)-1, improves tight junction protein function in ECs, and genetic deletion of MKP-1 aggravates ischemic brain injury. However, whether the latter affects BBB integrity, and the cell type-specific mechanism underlying this process, remain unclear. In this study, we established an adult male mouse model of ischemic stroke by occluding the middle cerebral artery for 60 minutes and overexpressed MKP-1 in ECs on the injured side via lentiviral transfection before stroke. We found that overexpression of MKP-1 in ECs reduced infarct volume, reduced the level of inflammatory factors interleukin-1β, interleukin-6, and chemokine C-C motif ligand-2, inhibited vascular injury, and promoted the recovery of sensorimotor and memory/cognitive function. Overexpression of MKP-1 in ECs also inhibited the activation of cerebral ischemia-induced extracellular signal-regulated kinase (ERK) 1/2 and the downregulation of occludin expression. Finally, to investigate the mechanism by which MKP-1 exerted these functions in ECs, we established an ischemic stroke model in vitro by depriving the primary endothelial cell of oxygen and glucose, and pharmacologically inhibited the activity of MKP-1 and ERK1/2. Our findings suggest that MKP-1 inhibition aggravates oxygen and glucose deprivation-induced cell death, cell monolayer leakage, and downregulation of occludin expression, and that inhibiting ERK1/2 can reverse these effects. In addition, co-inhibition of MKP-1 and ERK1/2 exhibited similar effects to inhibition of ERK1/2. These findings suggest that overexpression of MKP-1 in ECs can prevent ischemia-induced occludin downregulation and cell death via deactivating ERK1/2, thereby protecting the integrity of BBB, alleviating brain injury, and improving post-stroke prognosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。