Knockdown of ALK7 inhibits high glucose-induced oxidative stress and apoptosis in retinal pigment epithelial cells

ALK7 敲低可抑制高糖诱导的视网膜色素上皮细胞氧化应激和细胞凋亡

阅读:5
作者:Qiang Shi, Xiaomin Dong, Ming Zhang, Yuhong Cheng, Cheng Pei

Abstract

Diabetic retinopathy (DR) is one of the diabetic complications associated with hyperglycaemia-mediated oxidative stress. Activin receptor-like kinase 7 (ALK7) has been proven to be a potential therapeutic approach for diabetic cardiomyopathy, which is another diabetic complication. However, the role of ALK7 in DR remains unclear. In the current study, ALK7 was found to be up-regulated in clinical samples from DR patients and high glucose (HG)-induced human retinal pigment epithelial cells (ARPE-19). In vitro studies demonstrated that knockdown of ALK7 in ARPE-19 cells through transfection with siRNA-ALK7 (si-ALK7) improved cell viability in HG-induced ARPE-19 cells. Knockdown of ALK7 suppressed HG-induced reactive oxygen species (ROS) production, as well elevating the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) in ARPE-19 cells. The number of apoptotic cells was significantly decreased after transfection with si-ALK7. ALK7 knockdown also caused a significant decrease in bax expression and an increase in bcl-2 expression in HG-induced ARPE-19 cells. In addition, ALK7 knockdown resulted in remarkable increase in the expressions of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) in ARPE-19 cells in response to HG induction. Taken together, knockdown of ALK7 protected ARPE-19 cells from HG-induced oxidative injury, which might be mediated by the activation of the Nrf2/HO-1 signalling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。