Bach1 plays an important role in angiogenesis through regulation of oxidative stress

Bach1 通过调节氧化应激在血管生成中发挥重要作用

阅读:5
作者:Farina Mohamad Yusoff, Tatsuya Maruhashi, Ki-Ichiro Kawano, Ayumu Nakashima, Kazuaki Chayama, Satoshi Tashiro, Kazuhiko Igarashi, Yukihito Higashi

Abstract

Bach1 is a known transcriptional repressor of the heme oxygenase-1 (HO-1) gene. The purpose of this study was to determine whether angiogenesis is accelerated by genetic ablation of Bach1 in a mouse ischemic hindlimb model. Hindlimb ischemia was surgically induced in wild-type (WT) mice, Bach1-deficient (Bach1-/-) mice, apolipoprotein E-deficient (ApoE-/-) mice, and Bach1/ApoE double-knockout (Bach1-/-/ApoE-/-) mice. Blood flow recovery after hindlimb ischemia showed significant improvement in Bach1-/- mice compared with that in WT mice. Bach1-/-/ApoE-/- mice showed significantly improved blood flow recovery compared with that in ApoE-/- mice to the level of that in WT mice. Migration of endothelial cells in ApoE-/- mice was significantly decreased compared with that in WT mice. Migration of endothelial cells significantly increased in Bach1-/-/ApoE-/- mice compared with that in ApoE-/- mice to the level of that in WT mice. The expression levels of HO-1, peroxisome proliferator-activated receptor γ co-activator-1α, angiopoietin 1, and fibroblast growth factor 2 in endothelial cells isolated from Bach1-/-/ApoE-/- mice were significantly higher than those in ApoE-/- mice. Oxidative stress assessed by anti-acrolein antibody staining in ischemic tissues and urinary 8-isoPGF2α excretion were significantly increased in ApoE-/- mice compared with those in WT and Bach1-/- mice. Oxidative stress was reduced in Bach1-/-/ApoE-/- mice compared with that in ApoE-/- mice. These findings suggest that genetic ablation of Bach1 plays an important role in ischemia-induced angiogenesis under the condition of increased oxidative stress. Bach1 could be a potential therapeutic target to reduce oxidative stress and potentially improve angiogenesis for patients with peripheral arterial disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。