Heterozygosity for the proteasomal Psmc1 ATPase is insufficient to cause neuropathology in mouse brain, but causes cell cycle defects in mouse embryonic fibroblasts

蛋白酶体 Psmc1 ATPase 的杂合性不足以引起小鼠大脑的神经病理学,但会导致小鼠胚胎成纤维细胞的细胞周期缺陷

阅读:7
作者:Nooshin Rezvani, Jamal Elkharaz, Karen Lawler, Maureen Mee, R John Mayer, Lynn Bedford

Abstract

The ubiquitin proteasome system (UPS) is a fundamental cellular pathway, degrading most unwanted intracellular soluble proteins. Dysfunction of the UPS has been associated with normal aging as well as various age-related pathological conditions, including chronic human neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, leading to a significant interest in the involvement of this degradative system in neurones. We previously reported that the 26S proteasome was essential for neuronal homeostasis and survival in mouse brains following conditional genetic homozygous knockout of a key subunit of the multi-meric 26S proteasome (19S ATPase Psmc1). Here, we investigated the effects of Psmc1 heterozygosity in the mouse brain and primary mouse embryonic fibroblasts. Neuropathologically and biochemically, Psmc1 heterozygous (Psmc1(+/-)) knockout mice were indistinguishable from wild-type mice. However, we report a novel age-related accumulation of intraneuronal lysine 48-specific polyubiquitin-positive granular staining in both wild-type and heterozygous Psmc1 knockout mouse brain. In Psmc1(+/-) MEFs, we found a significant decrease in PSMC1 levels, altered 26S proteasome assembly and a notable G2/M cell cycle arrest that was not associated with an increase in the cell cycle regulatory protein p21. The disturbance in cell cycle progression may be responsible for the growth inhibitory effects in Psmc1(+/-) MEFs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。