MicroRNA 221 expression in theca and granulosa cells: hormonal regulation and function

MicroRNA 221 在卵泡膜细胞和颗粒细胞中的表达:激素调节和功能

阅读:10
作者:Cheyenne L Robinson, Lingna Zhang, Luis F Schütz, Morgan L Totty, Leon J Spicer

Abstract

Small noncoding RNA molecules (miRNA) regulate protein levels in a post-transcriptional manner by partial base pairing to the 3'-UTR of target genes thus mediating degradation or translational repression. Previous studies indicate that numerous miRNA regulate the biosynthesis of intraovarian hormones, and emerging evidence indicates that one of these, miRNA-221 (MIR221), may be a modulator of ovarian function. However, the hormonal control of ovarian MIR221 is not known. The objectives of this study were to investigate the developmental and hormonal regulation of MIR221 expression in granulosa (GC) and theca cell (TC) and its possible role in regulating follicular function. Bovine ovaries were collected from a local abattoir and GC and TC were obtained from small (<6 mm) and large (≥8 mm) follicles. In Exp. 1, GCs of small follicles had 9.7-fold greater (P < 0.001) levels of MIR221 than those of large follicles, and TCs of large follicles had 3.7-fold greater (P < 0.001) levels of MIR221 than those of small follicles. In large follicles, abundance of MIR221 was 66.6-fold greater (P < 0.001) in TCs than in GCs. In small follicles, MIR221 abundance did not differ (P = 0.14) between GC and TCs. In vitro Exp. 2, 3, and 4 revealed that treatment of bovine TCs with various steroids, phytoestrogens, IGF1, forskolin, and dibutyryl cyclic adenosine monophosphate had no effect (P > 0.35) on MIR221 expression, whereas treatment with fibroblast growth factor 9 (FGF9) and FGF2 increased (P < 0.001) TC MIR221 abundance 1.7- to 2.5-fold. In Exp. 5, FGF9 increased (P < 0.05) GC MIR221 abundance by 1.7- and 2.0-fold in small and large follicles, respectively. The role of MIR221 in GC steroidogenesis was investigated in Exp. 6 and it was found that transfection with a MIR221 mimic reduced (P < 0.01) GC estradiol and progesterone production induced by FSH and IGF1, whereas transfection with MIR221 inhibitor had little or no effect. We conclude that thecal MIR221 expression is increased by FGF9 and increased MIR221 may act to inhibit GC steroidogenesis in cattle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。