New insights into the type A glycan modification of Clostridioides difficile flagellar protein flagellin C by phosphoproteomics analysis

通过磷酸化蛋白质组学分析对艰难梭菌鞭毛蛋白鞭毛蛋白 C 的 A 型聚糖修饰有了新的认识

阅读:5
作者:Paul J Hensbergen, Arnoud H de Ru, Annemieke H Friggen, Jeroen Corver, Wiep Klaas Smits, Peter A van Veelen

Abstract

The type A glycan modification found in human pathogen Clostridioides difficile consists of a monosaccharide (GlcNAc) that is linked to an N-methylated threonine through a phosphodiester bond. This structure has previously been described on the flagellar protein flagellin C of several C. difficile strains and is important for bacterial motility. The study of post-translational modifications often relies on some type of enrichment strategy; however, a procedure for enrichment of this modification has not yet been demonstrated. In this study, we show that an approach that is commonly used in phosphoproteomics, Fe3+-immobilized metal affinity chromatography, also enriches for peptides with this unique post-translational modification. Using LC-MS/MS analyses of immobilized metal affinity chromatography-captured tryptic peptides, we observed not only type A-modified C. difficile flagellin peptides but also a variety of truncated/modified type A structures on these peptides. Using an elaborate set of mass spectrometry analyses, we demonstrate that one of these modifications consists of a type A structure containing a phosphonate (2-aminoethylphosphonate), a modification that is rarely observed and has hitherto not been described in C. difficile. In conclusion, we show that a common enrichment strategy results in reliable identification of peptides carrying a type A glycan modification, and that the results obtained can be used to advance models about its biosynthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。