Cis-regulatory control of corticospinal system development and evolution

皮质脊髓系统发育和进化的顺式调节控制

阅读:4
作者:Sungbo Shim, Kenneth Y Kwan, Mingfeng Li, Veronique Lefebvre, Nenad Sestan

Abstract

The co-emergence of a six-layered cerebral neocortex and its corticospinal output system is one of the evolutionary hallmarks of mammals. However, the genetic programs that underlie their development and evolution remain poorly understood. Here we identify a conserved non-exonic element (E4) that acts as a cortex-specific enhancer for the nearby gene Fezf2 (also known as Fezl and Zfp312), which is required for the specification of corticospinal neuron identity and connectivity. We find that SOX4 and SOX11 functionally compete with the repressor SOX5 in the transactivation of E4. Cortex-specific double deletion of Sox4 and Sox11 leads to the loss of Fezf2 expression, failed specification of corticospinal neurons and, independent of Fezf2, a reeler-like inversion of layers. We show evidence supporting the emergence of functional SOX-binding sites in E4 during tetrapod evolution, and their subsequent stabilization in mammals and possibly amniotes. These findings reveal that SOX transcription factors converge onto a cis-acting element of Fezf2 and form critical components of a regulatory network controlling the identity and connectivity of corticospinal neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。