Neurogranin as an important regulator in swimming training to improve the spatial memory dysfunction of mice with chronic cerebral hypoperfusion

神经粒蛋白作为游泳训练的重要调节剂改善慢性脑灌注不足小鼠的空间记忆功能障碍

阅读:5
作者:Huawei Lin, Jiayong Zhang, Yaling Dai, Huanhuan Liu, Xiaojun He, Lewen Chen, Jing Tao, Chaohui Li, Weilin Liu

Background

Vascular cognitive impairment caused by chronic cerebral hypoperfusion (CCH) has become a hot issue worldwide. Aerobic exercise positively contributes to the preservation or restoration of cognitive abilities; however, the specific mechanism has remained inconclusive. And recent studies found that neurogranin (Ng) is a potential biomarker for cognitive impairment. This study aims to investigate the underlying role of Ng in swimming training to improve cognitive impairment.

Conclusion

Swimming training can mediate the expression of Ng to enhance hippocampal synaptic plasticity and improve related pathological changes induced by CCH, thereby ameliorating the spatial memory impairment of vascular cognitive impairment.

Methods

To test this hypothesis, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) system was utilized to construct a strain of Ng conditional knockout (Ng cKO) mice, and bilateral common carotid artery stenosis (BCAS) surgery was performed to prepare the model. In Experiment 1, 2-month-old male and female transgenic mice were divided into a control group (wild-type littermate, n = 9) and a Ng cKO group (n = 9). Then, 2-month-old male and female C57BL/6 mice were divided into a sham group (C57BL/6, n = 12) and a BCAS group (n = 12). In Experiment 2, 2-month-old male and female mice were divided into a sham group (wild-type littermate, n = 12), BCAS group (n = 12), swim group (n = 12), BCAS + Ng cKO group (n = 12), and swim + Ng cKO group (n = 12). Then, 7 days after BCAS, mice were given swimming training for 5 weeks (1 week for adaptation and 4 weeks for training, 5 days a week, 60 min a day). After intervention, laser speckle was used to detect cerebral blood perfusion in the mice, and the T maze and Morris water maze were adopted to test their spatial memory. Furthermore, electrophysiology and Western blotting were conducted to record long-term potential and observe the expressions of Ca2+ pathway-related proteins, respectively. Immunohistochemistry was applied to analyze the expression of relevant markers in neuronal damage, inflammation, and white matter injury.

Results

The figures showed that spatial memory impairment was detected in Ng cKO mice, and a sharp decline of cerebral blood flow and an impairment of progressive spatial memory were observed in BCAS mice. Regular swimming training improved the spatial memory impairment of BCAS mice. This was achieved by preventing long-term potential damage and reversing the decline of Ca2+ signal transduction pathway-related proteins. At the same time, the results suggested that swimming also led to improvements in neuronal death, inflammation, and white matter injury induced by CCH. Further study adopted the use of Ng cKO transgenic mice, and the results indicated that the positive effects of swimming training on cognitive impairments, synaptic plasticity, and related pathological changes caused by CCH could be abolished by the knockout of Ng.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。