Matrix Metalloproteases from Adipose Tissue-Derived Stromal Cells Are Spatiotemporally Regulated by Hydrogel Mechanics in a 3D Microenvironment

脂肪组织来源的基质细胞中的基质金属蛋白酶在 3D 微环境中受水凝胶力学的时空调控

阅读:7
作者:Francisco Drusso Martinez-Garcia, Joris Anton van Dongen, Janette Kay Burgess, Martin Conrad Harmsen

Abstract

Adipose tissue-derived stromal cells (ASCs) are of interest in tissue engineering and regenerative medicine (TERM) due to their easy acquisition, multipotency, and secretion of a host of factors that promote regeneration. Retention of ASCs in or around lesions is poor following direct administration. Therefore, for TERM applications, ASCs can be 'immobilized' via their incorporation into hydrogels such as gelatine methacryloyl (GelMA). Tweaking GelMA concentration is a common approach to approximate the mechanical properties found in organs or tissues that need repair. Distinct hydrogel mechanics influence the ability of a cell to spread, migrate, proliferate, and secrete trophic factors. Mesenchymal cells such as ASCs are potent remodellers of the extracellular matrix (ECM). Not only do ASCs deposit components, they also secrete matrix metalloproteases (MMPs) which degrade ECM. In this work, we investigated if GelMA polymer concentration influenced the expression of active MMPs by ASCs. In addition, MMPs' presence was interrogated with regard to ASCs morphology and changes in hydrogel ultrastructure. For this, immortalised ASCs were embedded in 5%, 10%, and 15% (w/v) GelMA hydrogels, photopolymerised and cultured for 14 d. Zymography in situ indicated that MMPs had a variable, hydrogel concentration-dependent influence on ASCs-secreted MMPs. In 5% GelMA, ASCs showed a high and sustained expression of MMPs, while, in 10% and 15% GelMA, such expression was almost null. ASCs morphology based on F-actin staining showed that increasing GelMA concentrations inhibit their spreading. Scanning electron microscopy (SEM) showed that hydrogel ultrastructure in terms of pore density, pore size, and percentage porosity were not consistently influenced by cells. Interestingly, changes in ultrastructural parameters were detected also in cell-free materials, albeit without a clear trend. We conclude that hydrogel concentration and its underlying mechanics influenced MMP expression by ASCs. The exact MMPs that respond to these mechanical cues should be defined in follow-up experiments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。