Biomechanical Properties of Blood Plasma Extracellular Vesicles Revealed by Atomic Force Microscopy

原子力显微镜揭示血浆细胞外囊泡的生物力学特性

阅读:6
作者:Viktor Bairamukov, Anton Bukatin, Sergey Landa, Vladimir Burdakov, Tatiana Shtam, Irina Chelnokova, Natalia Fedorova, Michael Filatov, Maria Starodubtseva

Abstract

While extracellular vesicles (EVs) are extensively studied by various practical applications in biomedicine, there is still little information on their biomechanical properties due to their nanoscale size. We identified isolated blood plasma vesicles that carried on biomarkers associated with exosomes and exomeres and applied atomic force microscopy (AFM) to study them at single particle level in air and in liquid. Air measurements of exosomes revealed a mechanically indented internal cavity in which highly adhesive sites were located. In contrast, the highly adhesive sites of exomeres were located at the periphery and the observed diameter of the particles was ~35 nm. In liquid, the reversible deformation of the internal cavity of exosomes was observed and a slightly deformed lipid bi-layer was identified. In contrast, exomeres were not deformed and their observed diameter was ~16 nm. The difference in diameters might be associated with a higher sorption of water film in air. The parameters we revealed correlated with the well-known structure and function for exosomes and were observed for exomeres for the first time. Our data provide a new insight into the biomechanical properties of nanoparticles and positioned AFM as an exclusive source of in situ information about their biophysical characteristics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。