Spatial visualization of drug uptake and distribution in Fasciola hepatica using high-resolution AP-SMALDI mass spectrometry imaging

使用高分辨率 AP-SMALDI 质谱成像对肝片吸虫的药物吸收和分布进行空间可视化

阅读:9
作者:Carolin M Morawietz, Alejandra M Peter Ventura, Christoph G Grevelding, Simone Haeberlein, Bernhard Spengler

Abstract

Understanding drug penetration, distribution, and metabolization is fundamental for understanding drug efficacy. This also accounts for parasites during antiparasitic treatment. Recently, we established matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) in blood flukes and liver flukes. This label-free technique is capable of visualizing the molecular distribution of endogenous and exogenous molecules, such as drug compounds. Here, we conducted atmospheric-pressure scanning microprobe MALDI MSI (AP-SMALDI MSI) of tissue sections of adult Fasciola hepatica that have been treated in vitro with 100 µM of triclabendazole (TCBZ), the drug of choice for treatment of fasciolosis, and its main metabolite triclabendazole sulfoxide (TCBZ-SO). Measurements covered an m/z mass range of 250-1,000 and provided a high spatial resolution using a pixel size of 10 µm. To support the interpretation of drug distribution, we first identified endogenous lipids that mark characteristic tissues such as the gastrodermis, the tegument, and the parenchyma. The obtained results suggested an early tegumental route of TCBZ uptake within 20 min, followed by spreading throughout the parasite after 4 h, and an even distribution in most tissues after 12 h. This coincided with a strong reduction of parasite vitality. TCBZ-SO treatment demonstrated the accumulation of this metabolite in the same tissues as the parent drug compound. These data demonstrate the auspicious potential of MALDI MSI to visualize uptake and distribution patterns of drugs or drug-candidate compounds in parasites, which might contribute to preclinical drug discovery in liver fluke research and beyond.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。