Aberrant mechanosensing in injured intervertebral discs as a result of boundary-constraint disruption and residual-strain loss

由于边界约束破坏和残余应变损失导致受伤椎间盘的异常机械传感

阅读:6
作者:Edward D Bonnevie, Sarah E Gullbrand, Beth G Ashinsky, Tonia K Tsinman, Dawn M Elliott, Pen-Hsiu Grace Chao, Harvey E Smith, Robert L Mauck

Abstract

In fibrous tissues, prestressed boundary constraints at bone interfaces instil residual strain throughout the tissue, even when unloaded. For example, internal swelling pressures in the central nucleus pulposus of the intervertebral disc generate prestrain in the outer annulus fibrosus. With injury and depressurization, these residual strains are lost. Here we show that the loss of residual strains in the intervertebral disc alters the microenvironment and instigates aberrant tissue remodelling and the adoption of atypical cellular phenotypes. By using puncture surgery of the annulus fibrosus in rabbits, ex vivo puncture experiments and electrospun nanofibrous scaffolds recapitulating these evolving boundary constraints, we show that the loss of residual strain promotes short-term apoptosis and the emergence of a fibrotic phenotype. We also show that local fibre organization and cellular contractility mediate this process and that the aberrant cellular changes could be abrogated by targeting the cell-mechanosensing machinery with small molecules. Our findings indicate that injury to dense connective tissues under prestrain alters boundary constraints and residual strain; this leads to aberrant mechanosensing, which in turn promotes disease progression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。