Fibroblast regulates angiogenesis in assembled oral cancer organoid: A possible role of NNMT

成纤维细胞调节组装口腔癌类器官中的血管生成:NNMT 的可能作用

阅读:8
作者:Mohammed Holkom, Xiao Yang, Rui Li, Yang Chen, Hui Zhao, Zhengjun Shang

Conclusions

We clarify that stromal NNMT enables the steady reproduction of angiogenesis in assembled oral cancer organoids, providing a novel target for exploiting antiangiogenic therapy.

Methods

Secretion of vascular endothelial growth factor-A (VEGFA) was analysed to compare the proangiogenic properties of OSCC cells and corresponding CAFs. Cell aggregates consisting of endothelial cells (ECs), CAFs and cancer cells were generated to construct assembled organoids. Nicotinamide N-methyltransferase (NNMT) was pharmacologically or genetically inhibited to block the activation of CAFs. ATAC-seq was employed to test the transcriptional network of fibroblasts overexpressing NNMT.

Objective

Tumour angiogenesis is affected by various cell types in the tumour microenvironment (TME), including cancer cells and cancer-associated fibroblasts (CAFs). Here, an assembled organoid model was generated to investigate the mechanism by which the TME regulates angiogenesis in oral squamous cell carcinoma (OSCC). Materials and

Results

Compared with cancer cells, CAFs secreted more VEGFA. Coculture with CAFs more effectively promoted the sprouting of ECs. Blockade of CAF activation via inhibition of NNMT drastically reduced the expression of CD31 in the assembled organoids. Overexpression of NNMT enhanced the transcription of genes related to angiogenesis in fibroblasts. Specifically, NNMT orchestrated the enrichment of the transcription factor JUNB at the promoter of VEGFA. Conclusions: We clarify that stromal NNMT enables the steady reproduction of angiogenesis in assembled oral cancer organoids, providing a novel target for exploiting antiangiogenic therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。