MET or NRAS amplification is an acquired resistance mechanism to the third-generation EGFR inhibitor naquotinib

MET 或 NRAS 扩增是第三代 EGFR 抑制剂那格替尼的获得性耐药机制

阅读:12
作者:Kiichiro Ninomiya, Kadoaki Ohashi, Go Makimoto, Shuta Tomida, Hisao Higo, Hiroe Kayatani, Takashi Ninomiya, Toshio Kubo, Eiki Ichihara, Katsuyuki Hotta, Masahiro Tabata, Yoshinobu Maeda, Katsuyuki Kiura

Abstract

As a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), osimeritnib is the standard treatment for patients with non-small cell lung cancer harboring the EGFR T790M mutation; however, acquired resistance inevitably develops. Therefore, a next-generation treatment strategy is warranted in the osimertinib era. We investigated the mechanism of resistance to a novel EGFR-TKI, naquotinib, with the goal of developing a novel treatment strategy. We established multiple naquotinib-resistant cell lines or osimertinib-resistant cells, two of which were derived from EGFR-TKI-naïve cells; the others were derived from gefitinib- or afatinib-resistant cells harboring EGFR T790M. We comprehensively analyzed the RNA kinome sequence, but no universal gene alterations were detected in naquotinib-resistant cells. Neuroblastoma RAS viral oncogene homolog (NRAS) amplification was detected in naquotinib-resistant cells derived from gefitinib-resistant cells. The combination therapy of MEK inhibitors and naquotinib exhibited a highly beneficial effect in resistant cells with NRAS amplification, but the combination of MEK inhibitors and osimertinib had limited effects on naquotinib-resistant cells. Moreover, the combination of MEK inhibitors and naquotinib inhibited the growth of osimertinib-resistant cells, while the combination of MEK inhibitors and osimertinib had little effect on osimertinib-resistant cells. Clinical assessment of this novel combination (MEK inhibitors and naquotinib) is worth considering in osimertinib-resistant lung tumors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。