Exosomes Derived from Human Palatal Mesenchymal Cells Mediate Intercellular Communication During Palatal Fusion by Promoting Oral Epithelial Cell Migration

来自人类腭间充质细胞的外泌体通过促进口腔上皮细胞迁移介导腭融合过程中的细胞间通讯

阅读:9
作者:Zhuo Huang, Yusheng Zhi, Haiyan Cao, Zhuan Bian #, Miao He #

Conclusion

HEPM-EXO mediated cell-cell communication by regulating cell proliferation and migration of oral epithelial cells during palatogenesis.

Methods

The expression of exosome marker CD63 and CD81 in palatal cells during palatogenesis was detected by immunofluorescence staining. After being purified from the supernatant of human embryonic palatal mesenchymal (HEPM) cells, exosomes (HEPM-EXO) were characterized by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and Western blot. HEPM-EXO were co-cultured with human immortalized oral epithelial cells (HIOEC). The effects of HEPM-EXO on the cell proliferation, migration, apoptosis and epithelial-mesenchymal transition (EMT) of HIOEC were evaluated. The proteins encapsulated in HEPM-EXO were analyzed by proteomic analysis.

Purpose

Exosomes are important "messengers" in cell-cell interactions, but their potential effects on palatal fusion are still unknown. This study aimed to explore the role and mechanism of exosomes derived from palatal mesenchymal cells in epithelial-mesenchymal communication during palatogenesis.

Results

The extensive expression of CD63 and CD81 in palatal epithelial and mesenchymal cells were continuously detected during E12.5~E14.5, suggesting that exosomes were involved in the process of palatal fusion. The expression of CD63 was also observed in the acellular basement membrane between the palatal epithelium and the mesenchyme in vivo, and HEPM-EXO could be internalized by HIOEC in vitro, suggesting that exosomes are potent to diffuse through the cellular tissue boundary to mediate palatal cell-cell communication. Exposure of HEPM-EXO to HIOEC substantially inhibited the proliferation and stimulated the migration of HIOEC, but had no significant effect on cell apoptosis and EMT. Proteomic analysis revealed the basic characteristics of the proteins in HEPM-EXO and that exosomal THBS1 may potentially regulate the cell behaviors of HIOEC, which needs further verification. Gene ontology (GO) analysis uncovered that the proteins highly expressed in HEPM-EXO are closely related to wound healing, implying a promising therapeutic opportunity of HEPM-EXO in tissue injury treatment with future studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。