S100A9 promotes glycolytic activity in HER2-positive breast cancer to induce immunosuppression in the tumour microenvironment

S100A9 促进 HER2 阳性乳腺癌中的糖酵解活性,从而诱导肿瘤微环境中的免疫抑制

阅读:4
作者:Jia-Qi Yuan, Shou-Man Wang, Lei Guo

Conclusions

S100A9 overexpression upregulated the glycolysis activity of tumour cells through the c-Myc-related pathway, suppressing lymphocyte infiltration in the tumour stroma, affecting the efficacy of immune regulation and long-term survival of patients.

Methods

A total of 667 BRCA patients in Xiangya Hospital of Central South University were enrolled in this study. Haematoxylin and eosin (H&E) staining were used to count TIN in tissues. Human breast cancer cell lines (SK-BR-3 cells and BT474 cells) were transfected with S100A9 specific small interfering RNA (siRNA). The expressions of S100A9, glycolytic enzymes and lymphocyte markers were detected by immunohistochemistry (IHC) staining, Western blot and immunofluorescence. Lactate production, glucose consumption and the extracellular acidification rate (ECAR) were detected to assess glycolysis activity.

Purpose

The purpose of this study was to investigate the correlation between S100 calcium binding protein A9 (S100A9), tumour glycolysis and tumour infiltrating lymphocytes (TIL) in human epidermal growth factor receptor 2 (HER2) - positive breast cancer (BRCA). Materials and

Results

S100A9 was significantly overexpressed in HER2+ cases. The expressions of phosphoglycerol kinase 1 (PGK1), lactate dehydrogenase A (LDHA) and enolase α (ENO1) were significantly up-regulated in S100A9 dominant tissues. The expressions of PGK1, LDHA and ENO1 detected in S100A9 silenced cell lines were significantly down-regulated. Moreover, S100A9 silencing significantly altered lactate production, glucose uptake and ECAR levels in HER2+ cell lines. Co-expression of S100A9 and c-Myc was detected in HER2+ tissues. The absence of S100A9 greatly hindered β-catenin expression in cell lines, which later induced the phosphorylation of c-Myc.The amount of TILs in cases with abundant S100A9 and LDHA was much greater than in cases with low S100A9 levels and poorer LDHA. TIL deficiency and elevated S100A9 intensity are factors affecting the survival rate of HER2+ BRCA cases. Conclusions: S100A9 overexpression upregulated the glycolysis activity of tumour cells through the c-Myc-related pathway, suppressing lymphocyte infiltration in the tumour stroma, affecting the efficacy of immune regulation and long-term survival of patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。