APPL1 ameliorates myocardial ischemia-reperfusion injury by regulating the AMPK signaling pathway

APPL1通过调控AMPK信号通路改善心肌缺血再灌注损伤

阅读:5
作者:Yunguang Cen, Wei Liao, Taihao Wang, Daimin Zhang

Abstract

Myocardial ischemia-reperfusion injury results in elevated reactive oxygen species (ROS) production and causes oxidative stress damage. Therefore, the current study aimed to investigate whether adaptor protein phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) could induce the expression of antioxidant enzymes through AMP-activated protein kinase (AMPK) signaling in order to alleviate the injury caused by ischemia/hypoxia-reperfusion. Following induction of hypoxia-reoxygenation (H/R) injury in H9c2 cells, the liver kinase B1 (LKB1)/AMPK/acetyl-CoA carboxylase α (ACC) signaling pathway was investigated using western blot analysis, along with the detection of superoxide dismutase (SOD)2 and SOD3 expression. Additionally, cell viability was detected using a Cell Counting Kit-8 assay and ROS production was analyzed using ROS staining, whereas the expression levels of inflammatory mediators (TNF-α, monocyte chemoattractant protein 1 and IL-1β), apoptosis mediators [cleaved caspase-3, cleaved poly (ADP-ribose) polymerase and Bcl-2] and nuclear factor erythroid 2-related factor 2 signaling pathway-related proteins were detected via western blot analysis following overexpression of APPL1 alone or in combination with compound C treatment (an AMPK inhibitor). The results indicated that H/R induction upregulated the phosphorylation levels of LKB1, AMPK and ACC, and decreased the expression levels of APPL1 and SOD enzyme activities. APPL1 overexpression increased the phosphorylation levels of LKB1, AMPK and ACC, SOD enzyme activity and cell viability whereas the expression levels of proinflammatory mediators and proapoptotic mediators, and the levels of ROS production were markedly decreased when compared with H/R group with empty plasmid transfection. APPL overexpression-mediated effects were significantly abrogated by compound C. Taken together, the data indicated that APPL1 inhibited ROS production and H/R-induced myocardial injury via the AMPK signaling pathway. Therefore, APPL1 may serve as a potential therapeutic target for myocardial H/R injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。