Impact of Exercise Training on Survival Rate and Neural Cell Death in Sepsis Through the Maintenance of Redox Equilibrium

运动训练通过维持氧化还原平衡对脓毒症患者存活率和神经细胞死亡的影响

阅读:9
作者:Taewan Kim, Youngyun Jin, Jinkyung Cho, Donghyun Kim

Conclusion

Exercise training may delay the progression from the hyperdynamic state to the hypodynamic phase of sepsis by increasing antioxidant capacity and reducing apoptotic cell death.

Methods

We assessed the effectiveness of exercise in reducing ROS production and the inflammatory response using a cecal ligation and puncture (CLP)-induced sepsis model. Forty C57BL/6N male mice were randomly divided into 2 groups: control (CLP-Con; n=20) and experimental (CLP-Ex; n=20). Before the induction of sepsis by CLP, the CLP-Ex mice underwent interval training on a treadmill 3 days per week for 8 weeks. Each day involved 10 cycles of 2 minutes at 8 m/min and 2 minutes at 15 m/min. After the CLP procedure, we monitored the survival of 10 mice from each group over a 30-hour period.

Purpose

Sepsis-related deaths occur during both the early proinflammatory and the late immunosuppressive phases of the condition. The balance of pro- and anti-inflammatory responses is influenced by damaged cells that die via either proinflammatory necroptosis or anti-inflammatory apoptosis. Both forms of cell death may be mediated by reactive oxygen species (ROS) generated during the proinflammatory response. Recent evidence suggests that exercise training boosts antioxidative capacity and could offer protection against sepsis. Given these findings, we aimed to examine the impact of exercise training on neural cell death in the context of sepsis.

Results

The findings indicated that exercise training increased the survival rate among mice with CLP-induced sepsis by enhancing antioxidative capacity and delaying the transition from a hyperdynamic to an immunosuppressive state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。