Fluoxetine induces cytotoxic endoplasmic reticulum stress and autophagy in triple negative breast cancer

氟西汀诱导三阴性乳腺癌细胞毒性内质网应激和自噬

阅读:9
作者:Michelle Bowie, Patrick Pilie, Julia Wulfkuhle, Siya Lem, Abigail Hoffman, Shraddha Desai, Emanuel Petricoin, Amira Carter, Adrian Ambrose, Victoria Seewaldt, Dihua Yu, Catherine Ibarra Drendall

Aim

To investigate the mechanism of action of lipophilic antidepressant fluoxetine (FLX) in representative molecular subtypes of breast cancer.

Conclusion

Our study suggests a new role for FLX as an inducer of ER stress and autophagy, resulting in death of aggressive triple negative breast cancer SUM149PT.

Methods

The anti-proliferative effects and mechanistic action of FLX in triple-negative (SUM149PT) and luminal (T47D and Au565) cancer cells and non-transformed MCF10A were investigated. Reverse phase protein microarray (RPPM) was performed with and without 10 μmol/L FLX for 24 and 48 h to determine which proteins are significantly changed. Viability and cell cycle analysis were also performed to determine drug effects on cell growth. Western blotting was used to confirm the change in protein expression examined by RPPM or pursue other signaling proteins.

Results

The FLX-induced cell growth inhibition in all cell lines was concentration- and time-dependent but less pronounced in early passage MCF10A. In comparison to the other lines, cell growth reduction in SUM149PT coincided with significant induction of endoplasmic reticulum (ER) stress and autophagy after 24 and 48 h of 10 μmol/L FLX, resulting in decreased translation of proteins along the receptor tyrosine kinase/Akt/mammalian target of rapamycin pathways. The increase in autophagy marker, cleaved microtubule-associated protein 1 light chain 3, in SUM149PT after 24 h of FLX was likely due to increased metabolic demands of rapidly dividing cells and ER stress. Consequently, the unfolded protein response mediated by double-stranded RNA-dependent protein kinase-like ER kinase resulted in inhibition of protein synthesis, growth arrest at the G1 phase, autophagy, and caspase-7-mediated cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。