DNMT3A R882H mutation promotes acute leukemic cell survival by regulating glycolysis through the NRF2/NQO1 axis

DNMT3A R882H 突变通过 NRF2/NQO1 轴调节糖酵解促进急性白血病细胞存活

阅读:6
作者:Xuan Chu, Liang Zhong, Wenran Dan, Xiao Wang, Zhonghui Zhang, Zhenyan Liu, Yang Lu, Xin Shao, Ziwei Zhou, Shuyu Chen, Beizhong Liu

Background

Studies have confirmed that acute myeloid leukemia (AML) cells with DNA methyltransferase 3A Arg882His (DNMT3A R882H) mutation show an increased proliferation capability. However, the associated mechanism is still unclear. Glycolysis is involved in regulating malignant proliferation of cancer cell. Hence, we analyzed whether the DNMT3A R882H mutation interferes with glycolysis and thereby influences AML cell proliferation.

Conclusion

Taken together, these results suggest a novel mechanism by which a DNMT3A R882H mutation promotes glycolysis via activation of NRF2/NQO1 pathway. A parallel glycolysis inhibition adds to the anticancer effects of daunorubicin which might lead to a novel therapeutic approach for the treatment of AML patients carrying a DNMT3A R882H mutation.

Methods

We generated AML cell line carrying a DNMT3A-R882H mutation and compared it with the wild type (DNMT3A-WT) with regard to glycolysis regulation. Moreover, we analyzed the cell line's proliferation and apoptosis by a CCK-8 assay, western blotting, and flow cytometry. The role of NRF2/NQO1 signaling in regulating glycolysis was investigated by NRF2-knockdown and Brusatol (specific inhibitor of NRF2) treatment.

Results

DNMT3A R882H cells had a higher glucose transport capacity compared to WT cells and their viability could be reduced by glucose deprivation. Moreover, daunorubicin had a slight inhibitory effect on glycolysis while glycolysis inhibition re-sensitized mutant cells to daunorubicin. Obviously, DNMT3A R882H mutation activated the NRF2/NQO1 pathway and enhanced the glycolytic activity in mutant cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。