Transcriptome profiling of bovine inner cell mass and trophectoderm derived from in vivo generated blastocysts

源自体内产生的囊胚的牛内细胞团和滋养外胚层的转录组分析

阅读:5
作者:S M Hosseini, I Dufort, J Caballero, F Moulavi, H R Ghanaei, M A Sirard

Background

This study describes the generation and analysis of the transcriptional profile of bovine inner cell mass (ICM) and trophectoderm (TE), obtained from in vivo developed embryos by using a bovine-embryo specific array (EmbryoGENE) containing 37,238 probes.

Conclusions

The transcriptional changes occur during ICM and TE lineages specification in bovine is greater than previously understood. Therefore, this array data establishes a standard to evaluate the in vitro imprint on the transcriptome and to hypothesize the cross-species differences that allow in vitro acquisition of pluripotent ICM in human and mice but hinder that process in bovine.

Results

A total of 4,689 probes were differentially expressed between ICM and TE, among these, 2,380 and 2,309 probes were upregulated in ICM and TE tissues, respectively (P ≤ 0.01, FC ≥ 2.0, FDR: 2.0). Ontological classification of the genes predominantly expressed in ICM emerged a range of functional categories with a preponderance of genes involved in basal and developmental signaling pathways including P53, TGFβ, IL8, mTOR, integrin, ILK, and ELF2 signalings. Cross-referencing of microarray data with two available in vitro studies indicated a marked reduction in ICM vs. TE transcriptional difference following in vitro culture of bovine embryos. Moreover, a great majority of genes that were found to be misregulated following in vitro culture of bovine embryos were known genes involved in epigenetic regulation of pluripotency and cell differentiation including DNMT1, GADD45, CARM1, ELF5 HDAC8, CCNB1, KDM6A, PRDM9, CDX2, ARID3A, IL6, GADD45A, FGFR2, PPP2R2B, and SMARCA2. Cross-species referencing of microarray data revealed substantial divergence between bovine and mouse and human in signaling pathways involved in early lineage specification. Conclusions: The transcriptional changes occur during ICM and TE lineages specification in bovine is greater than previously understood. Therefore, this array data establishes a standard to evaluate the in vitro imprint on the transcriptome and to hypothesize the cross-species differences that allow in vitro acquisition of pluripotent ICM in human and mice but hinder that process in bovine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。