Activation of EGFR Bypass Signaling by TGFα Overexpression Induces Acquired Resistance to Alectinib in ALK-Translocated Lung Cancer Cells

TGFα 过表达激活 EGFR 旁路信号传导,诱导 ALK 易位肺癌细胞对阿来替尼产生获得性耐药性

阅读:5
作者:Tetsuo Tani, Hiroyuki Yasuda, Junko Hamamoto, Aoi Kuroda, Daisuke Arai, Kota Ishioka, Keiko Ohgino, Masayoshi Miyawaki, Ichiro Kawada, Katsuhiko Naoki, Yuichiro Hayashi, Tomoko Betsuyaku, Kenzo Soejima

Abstract

Alectinib is a highly selective ALK inhibitor and shows promising efficacy in non-small cell lung cancers (NSCLC) harboring the EML4-ALK gene rearrangement. The precise mechanism of acquired resistance to alectinib is not well defined. The purpose of this study was to clarify the mechanism of acquired resistance to alectinib in ALK-translocated lung cancer cells. We established alectinib-resistant cells (H3122-AR) from the H3122 NSCLC cell line, harboring the EML4-ALK gene rearrangement, by long-term exposure to alectinib. The mechanism of acquired resistance to alectinib in H3122-AR cells was evaluated by phospho-receptor tyrosine kinase (phospho-RTK) array screening and Western blotting. No mutation of the ALK-TK domain was found. Phospho-RTK array analysis revealed that the phosphorylation level of EGFR was increased in H3122-AR cells compared with H3122. Expression of TGFα, one of the EGFR ligands, was significantly increased and knockdown of TGFα restored the sensitivity to alectinib in H3122-AR cells. We found combination therapy targeting ALK and EGFR with alectinib and afatinib showed efficacy both in vitro and in a mouse xenograft model. We propose a preclinical rationale to use the combination therapy with alectinib and afatinib in NSCLC that acquired resistance to alectinib by the activation of EGFR bypass signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。