PPAR-γ agonist pioglitazone alleviates inflammatory response induced by lipopolysaccharides in osteoblast cells

PPAR-γ激动剂吡格列酮减轻脂多糖诱导的成骨细胞炎症反应

阅读:5
作者:Hua-Jun Yu, Lai-Jie Wang, Kai Huang, Qiao-Feng Guo, Bing-Yuan Lin, Yi-Yang Liu, Ming Yu, Gou-Ping Ma

Abstract

Osteomyelitis is an acute or chronic inflammatory bone disease with a high disability rate. As an anti-inflammatory factor, peroxisome proliferator activated receptor-γ (PPAR-γ) is not only implicated in a variety of inflammatory responses but also regulates osteoblast differentiation and bone mass. However, the role of PPAR-γ in osteomyelitis is not fully understood. In the present study, we demonstrated that PPAR-γ showed a lower expression level in infected bone tissue of osteomyelitis patients as compared with uninfected bone tissue from nonosteomyelitis patients with fracture of the hip. We applied lipopolysaccharides (LPSs) in MC3T3-E1 osteoblast precursor cell line as an in vitro model for osteomyelitis. LPS treatment increased osteomyelitis-associated inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), whereas PPAR-γ levels and cell viability in MC3T3-E1 cells were suppressed. PPAR-γ antagonist GW9662 further enhanced IL-6 and TNF-α levels, and decreased cell viability in the presence of LPS treatment. In contrast, PPAR-γ agonist pioglitazone antagonized the effect of LPS treatment in MC3T3-E1 cells. These findings suggest that PPAR-γ downregulation is associated with the inflammation and progression of osteomyelitis, and PPAR-γ agonist could serve as a therapeutic strategy to attenuate inflammatory responses. This study provides novel insights into the physiopathogenesis of osteomyelitis and future study is required to validate the findings in animal model and uncover the molecular mechanism of PPAR-γ-dependent anti-inflammation in osteoblasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。