Effects of Wood Smoke Constituents on Mucin Gene Expression in Mice and Human Airway Epithelial Cells and on Nasal Epithelia of Subjects with a Susceptibility Gene Variant in Tp53

木烟成分对小鼠和人类气道上皮细胞中黏蛋白基因表达的影响以及对 Tp53 易感基因变异受试者鼻腔上皮的影响

阅读:5
作者:Dereje Tassew, Susan Fort, Yohannes Mebratu, Jacob McDonald, Hong Wei Chu, Hans Petersen, Yohannes Tesfaigzi

Background

Exposure to wood smoke (WS) increases the risk for chronic bronchitis more than exposure to cigarette smoke (CS), but the underlying mechanisms are unclear.

Discussion

The potency of WS compared with CS in inducing mucin expression may explain the increased risk for chronic bronchitis in participants exposed to WS. Identification of the responsible compounds could help estimate the risk of pollutants in causing chronic bronchitis in susceptible individuals and provide strategies to improve management of lung diseases. https://doi.org/10.1289/EHP9446.

Methods

Mice and primary human AECs were exposed to WS or CS and the signaling receptor and pathway were identified using short hairpin structures, small molecule inhibitors, and Western analyses. Mass spectrometric analysis was used to identify active WS constituents. The role of a gene variant in Tp53 that modifies proline to arginine was examined using nasal brushings from study participants in the Lovelace Smokers Cohort, primary human AECs, and mice with a modified Tp53 gene.

Objective

The effect of WS and CS on mucous cell hyperplasia in mice and in human primary airway epithelial cells (AECs) was compared with replicate the findings in human cohorts. Responsible WS constituents were identified to better delineate the pathway involved, and the role of a tumor protein p53 (Tp53) gene polymorphism was investigated.

Results

WS at 25-fold lower concentration than CS increased mucin expression more efficiently in mice and in human AECs in a p53 pathway-dependent manner. Study participants who were homozygous for p53 arginine compared with the proline variant showed higher mucin 5AC (MUC5AC) mRNA levels in nasal brushings if they reported WS exposure. The WS constituent, oxalate, increased MUC5AC levels similar to the whole WS extract, especially in primary human AECs homozygous for p53 arginine, and in mice with a modified Tp53 gene. Further, the anion exchange protein, SLC26A9, when reduced, enhanced WS- and oxalate-induced mucin expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。