Histone deacetylase-4 and histone deacetylase-8 regulate interleukin-1β-induced cartilage catabolic degradation through MAPK/JNK and ERK pathways

组蛋白去乙酰化酶-4 和组蛋白去乙酰化酶-8 通过 MAPK/JNK 和 ERK 通路调节白细胞介素-1β 诱导的软骨分解代谢

阅读:8
作者:Pengcheng Wang, Zekai Mao, Qiyong Pan, Rui Lu, Xiaojian Huang, Xiaobin Shang, Rui Zhang, Hongbo You

Abstract

Interleukin-1β (IL-1β)-induced inflammatory response is associated with osteoarthritis (OA) and its development. Histone deacetylase (HDAC) may be involved in regulating this pathogenesis, but the mechanism has yet to be elucidated. The aim of the present study was to investigate the mechanism underlying the regulation of IL‑1β‑stimulated catabolic degradation of cartilage by HDAC. An in vitro model of OA was generated using rat articular chondrocytes (rACs) treated with IL‑1β. The role of HDAC in IL‑1β‑induced gene expression was investigated using HDAC inhibitors and specific small interfering RNAs (siRNAs). The association of diverse mitogen‑activated protein kinase (MAPK) pathways was examined. The IL‑1β‑induced expression of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)‑4 and ADAMTS‑5, and the production of collagen X and cyclooxygenase‑2 in rACs was accompanied by the expression of HDAC4 and HDAC8, and were significantly downregulated by HDAC inhibitors and specific siRNAs. IL‑1β‑induced activation of extracellular signal‑regulated kinase was downregulated by the HDAC inhibitor Trichostatin A, but not significantly by PCI‑34051. The activation of c‑Jun N‑terminal kinase was observably downregulated by the latter, but only slightly by the former. These results suggest that HDAC4 and HDAC8 may serve as key upstream mediators of MAPK in regulating the IL‑1β‑induced cartilage catabolic and degradation. Therefore, inhibiting HDAC4 or HDAC8 or both may be a promising therapeutic strategy in preventing and treating OA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。