miR‑149‑5p promotes chemotherapeutic resistance in ovarian cancer via the inactivation of the Hippo signaling pathway

miR-149-5p 通过抑制 Hippo 信号通路促进卵巢癌化疗耐药性

阅读:4
作者:Manman Xu, Juan Xiao, Ming Chen, Linjing Yuan, Jundong Li, Hongwei Shen, Shuzhong Yao

Abstract

Chemotherapeutic resistance remains a critical clinical issue is responsible for treatment failure in patients with ovarian cancer. Evidence of the involvement of miRNAs in chemoresistance in ovarian cancer has been recently emerging. However, the underlying molecular links between chemoresistance and miRNAs remain largely unknown. In this study, we report that miR‑149‑5p expression is markedly elevated in chemoresistant ovarian cancer tissues compared with the chemosensitive ovarian cancer tissues. Furthermore, the silencing of miR‑149‑5p enhanced the chemosensitivity of ovarian cancer cells to cisplatin in vitro and in vivo. Conversely, the upregulation of miR‑149‑5p aggravated chemoresistance in ovarian cancer cells. Our results further revealed that miR‑149‑5p directly targeted the core kinase components of the Hippo signaling pathway, STE20-like kinase (MST)1 and protein salvador homolog 1 (SAV1), resulting in the inactivation of TEA domain (TEAD) transcription. On the whole, our findings reveal a novel mechanism of of action miR‑149‑5p in inducing chemotherapeutic resistance in ovarian cancer, indicating that miR‑149‑5p may serve as a chemotherapeutic response indicator and a potential therapeutic target in ovarian cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。