Saikosaponin-d impedes hippocampal neurogenesis and causes cognitive deficits by inhibiting the survival of neural stem/progenitor cells via neurotrophin receptor signaling in mice

柴胡皂苷-d 通过神经营养因子受体信号抑制小鼠神经干细胞/祖细胞的存活,从而阻碍海马神经发生并导致认知缺陷

阅读:6
作者:Tingting Qin, Ziqiao Yuan, Jiayu Yu, Xinxin Fu, Xueyang Deng, Qiang Fu, Zhanqiang Ma, Shiping Ma

Abstract

Neural stem/progenitor cells (NPCs) are multipotent stem cells in the central nervous system. Damage to NPCs has been demonstrated to cause adverse effects on neurogenesis and to contribute to neurological diseases. Our previous research suggested that saikosaponin-d (SSd), a cytostatic drug belonging to the bioactive triterpenoid saponins, exhibited neurotoxicity by inhibiting hippocampal neurogenesis, but the underlying mechanism remained elusive. This study was performed to clarify the role of SSd in cognitive function and the mechanism by which SSd induced damage to hippocampal neurogenesis and NPCs. Our results indicated that SSd caused hippocampus-dependent cognitive deficits and inhibited hippocampal neurogenesis by reducing the numbers of newborn neurons in mice. RNA sequencing analysis revealed that SSd-induced neurotoxicity in the hippocampus involved neurotrophin receptor-interacting MAGE (NRAGE)/neurotrophin receptor interacting factor (NRIF)/p75NTR -associated cell death executor (NADE) cell signaling activated by the p75 neurotrophin receptor (p75NTR ). Mechanistic studies showed that a short hairpin RNA targeting p75NTR intracellular domain reversed SSd-increased NRAGE/NRIF/NADE signaling and the c-Jun N-terminal kinase/caspase apoptotic pathway, subsequently contributing to the survival of NPCs, as well as cell proliferation and differentiation. The addition of recombinant brain-derived neurotrophic factor (BDNF) ameliorated the SSd-induced inhibition of BDNF/Tyrosine kinase receptor B (TrkB) neurotrophic signaling, but did not affect SSd-activated pro-BDNF/p75NTR signaling. Moreover, the SSd-induced elevation of cytosolic Ca2+ concentration was responsible for damage to NPCs. The extracellular Ca2+ chelator ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), rather than the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA/AM), attenuated SSd-induced cytosolic Ca2+ dysfunction and SSd-disordered TrkB/p75NTR signaling. Overall, this study demonstrated a new mechanism for the neurotoxic effect of SSd, which has emerging implications for pharmacological research of SSd and provides a better understanding of neurotoxicity induced by cytostatic drugs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。