Activity of a ubiquitin ligase adaptor is regulated by disordered insertions in its arrestin domain

泛素连接酶接头的活性受其抑制蛋白结构域中的无序插入调控

阅读:5
作者:Matthew G Baile, Evan L Guiney, Ethan J Sanford, Jason A MacGurn, Marcus B Smolka, Scott D Emr

Abstract

The protein composition of the plasma membrane is rapidly remodeled in response to changes in nutrient availability or cellular stress. This occurs, in part, through the selective ubiquitylation and endocytosis of plasma membrane proteins, which in the yeast Saccharomyces cerevisiae is mediated by the HECT E3 ubiquitin ligase Rsp5 and arrestin--related trafficking (ART) adaptors. Here, we provide evidence that the ART protein family members are composed of an arrestin fold with interspersed disordered loops. Using Art1 as a model, we show that these loop and tail regions, while not strictly required for function, regulate its activity through two separate mechanisms. Disruption of one loop mediates Art1 substrate specificity. Other loops are subjected to phosphorylation in a manner dependent on the Pho85 cyclins Clg1 and Pho80. Phosphorylation of the loops controls Art1's localization to the plasma membrane, which promotes cargo ubiquitylation and endocytosis, demonstrating a mechanism through which Art1 activity is regulated.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。