Epigenetic consequences of hormonal interactions between opposite-sex twin fetuses

异性双胞胎胎儿间激素相互作用的表观遗传后果

阅读:6
作者:Siming Kong, Yong Peng, Wei Chen, Xinyi Ma, Yuan Wei, Yangyu Zhao, Rong Li, Jie Qiao, Liying Yan

Abstract

Previous studies reported inconsistent evidence about some phenotypic traits of females in human opposite-sex twins (opposite-sex females [OSF]) being distinct from females in same-sex twins (SSF). Comparatively, less evidence showed significant differences between males in OS twins (opposite-sex males [OSM]) and males in same-sex twins (SSM). The twin testosterone transfer hypothesis suggests that prenatal exposure of testosterone in utero may be a possible explanation for the differential traits in OSF; however, the underlying mechanism is unknown. Here, we investigated the potential epigenetic effects of hormone interactions and their correlation to the observed phenotypic traits. In the study, DNA methylomic data from 54 newborn twins and histone modification data (H3K4me3, H3K4me1, H3K27me3, and H3K27ac) from 14 newborn twins, including same-sex females (SSF), OS twins, and same-sex males (SSM) were generated. We found that OSF were clearly distinguishable from SSF by DNA methylome, while OSM were distinguishable from SSM by H3K4me1 and H3K4me3. To be more specific, compared to SSF, OSF showed a stronger correlation to males (OSM and SSM) in genome-wide DNA methylation. Further, the DNA methylomic differences between OSF and SSF were linked to the process involving cognitive functions and nervous system regulation. The differential H3K4me3 between OSM and SSM was linked to immune responses. These findings provide epigenetic evidence for the twin testosterone transfer hypothesis and offer novel insights on how prenatal hormone exposure in utero may be linked to the reported differential traits of OS twins.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。