Evolutionary genetics of pulmonary anatomical adaptations in deep-diving cetaceans

深海鲸类肺部解剖适应的进化遗传学

阅读:5
作者:Boxiong Guo, Yixuan Sun, Yuehua Wang, Ya Zhang, Yu Zheng, Shixia Xu, Guang Yang, Wenhua Ren

Background

Cetaceans, having experienced prolonged adaptation to aquatic environments, have undergone evolutionary changes in their respiratory systems. This process of evolution has resulted in the emergence of distinctive phenotypic traits, notably the abundance of elastic fibers and thickened alveolar walls in their lungs, which may facilitate alveolar collapse during diving. This structure helps selective exchange of oxygen and carbon dioxide, while minimizing nitrogen exchange, thereby reducing the risk of DCS. Nevertheless, the scientific inquiry into the mechanisms through which these unique phenotypic characteristics govern the diving behavior of marine mammals, including cetaceans, remains unresolved.

Conclusions

The study unveils pivotal genetic signals in cetaceans and other marine mammals, arising through evolution. These genetic signals may influence lung characteristics in marine mammals and have been linked to a reduced risk of developing DCS. Moreover, the research serves as a valuable reference for delving deeper into human diving physiology.

Results

This study entails an evolutionary analysis of 42 genes associated with pulmonary fibrosis across 45 mammalian species. Twenty-one genes in cetaceans exhibited accelerated evolution, featuring specific amino acid substitutions in 14 of them. Primarily linked to the development of the respiratory system and lung morphological construction, these genes play a crucial role. Moreover, among marine mammals, we identified eight genes undergoing positive selection, and the evolutionary rates of three genes significantly correlated with diving depth. Specifically, the SFTPC gene exhibited convergent amino acid substitutions. Through in vitro cellular experiments, we illustrated that convergent amino acid site mutations in SFTPC contribute positively to pulmonary fibrosis in marine mammals, and the presence of this phenotype can induce deep alveolar collapse during diving, thereby reducing the risk of DCS during diving. Conclusions: The study unveils pivotal genetic signals in cetaceans and other marine mammals, arising through evolution. These genetic signals may influence lung characteristics in marine mammals and have been linked to a reduced risk of developing DCS. Moreover, the research serves as a valuable reference for delving deeper into human diving physiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。