Correlations between the anti-corrosion properties and the photocatalytic behavior of epoxy coatings incorporating modified graphene oxide deposited on a zinc substrate

锌基改性氧化石墨烯环氧涂层的防腐性能与光催化行为之间的相关性

阅读:7
作者:Tamara-Rita Ovari, Boglárka Trufán, Gabriel Katona, Gabriella Szabó, Liana Maria Muresan

Abstract

This research aimed to create a substrate-coating system based on zinc and an epoxy resin incorporating modified graphene oxide, which possesses two key characteristics: effective resistance against corrosion and the ability to harness photocatalytic properties. Furthermore, correlations between the anti-corrosion properties and the photocatalytic behaviour of the coatings were made. Thin epoxy (EP) layers embedding 0.1 wt% graphene oxide (GO), reduced graphene oxide (rGO), and modified graphene oxide with (3-aminopropyl)-triethoxysilane (APTES) or poly(amidoamine) (PAMAM) dendrimer were applied on a zinc (Zn) substrate using the dip-coating method. Anti-corrosion properties of coated Zn samples were investigated through electrochemical impedance spectroscopy (EIS) measurements. They showed that the corrosion protection effect is more prominent for EP containing functionalized GO, the highest in the case of GO-PAMAM. The results of the EIS measurements indicated also that the corrosion protection provided by EP-rGO is smaller than that of EP. The photocatalytic properties of the coatings were studied by exposure of the samples to Methylene Blue (MB) solution followed by monitoring the model dye degradation through UV-Vis measurements. To determine the changes in the anti-corrosion properties due to photocatalysis, the coated Zn samples were put through additional EIS measurements. The same coatings applied to a glass substrate lacked photocatalytic properties, indicating that the Zn substrate is accountable for the degradation of MB. Furthermore, the incorporation of GO or functionalized GO into the coating amplifies this effect. From EIS spectra, it was determined that the protective properties loss observed after 3 days is due to coating delamination during exposure to MB solution, the EP-GO-APTES retaining the best adhesion of the coating, 98% remaining on Zn after a cross-hatch test. The corrosion measurements were complemented by examining the morphology and structure of the coatings and the modified GO particles. All things considered, the Zn/EP-GO-APTES system shows the best ability to break down organic pollutants, keeping a good anti-corrosive property and adhesion.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。