Vagus nerve plays a pivotal role in CD4+ T cell differentiation during CVB3-induced murine acute myocarditis

迷走神经在 CVB3 诱发的小鼠急性心肌炎中对 CD4+ T 细胞分化起关键作用

阅读:5
作者:Li Yue-Chun, Xiao-Hong Gu, Ge Li-Sha, De-Pu Zhou, Chao Xing, Xiao-Ling Guo, Lu-Lu Pan, Shi-Yang Song, Li-Li Yu, Guang-Yi Chen, Jia-Feng Lin, Mao-Ping Chu

Abstract

Abnormalities in CD4+ T cell (Th cell) differentiation play an important role in the pathogenesis of viral myocarditis (VMC). Our previous studies demonstrated that activation of the cholinergic anti-inflammatory pathway (CAP) alleviated the inflammatory response. In addition, we observed that right cervical vagotomy aggravates VMC by inhibiting CAP. However, the vagus nerve's effect on differentiation of CD4+ T cells has not been studied in VMC mice to date. In this study, we investigated the effects of cervical vagotomy and the α7nAChR agonist pnu282987 on CD4+ T cell differentiation in a murine myocarditis model (BALB/c) infected with coxsackievirus B3 (CVB3). Splenic CD4+ T cells from CVB3-induced mice obtained and cultured to investigate the potential mechanism of CD4+ T cell differentiation. Each Th cell subset was analyzed by flow cytometry. Our results showed that right cervical vagotomy increased proportions of Th1 and Th17 cells and decreased proportions of Th2 and Treg cells in the spleen. Vagotomy-induced upregulation of T-bet, Ror-γ, IFN-γ, and IL-17 expression while downregulating the expression of Gata3, Foxp3, and IL-4 in the heart. In addition, we observed upregulated levels of proinflammatory cytokines, aggravated myocardial lesions and cellular infiltration, and worsened cardiac function in VMC mice. Pnu282987 administration reversed these outcomes. Furthermore, vagotomy inhibited JAK2-STAT3 activation and enhanced NF-κB activation in splenic CD4+ T cells. The CD4+ T cell differentiation was related to JAK2-STAT3 and NF-κB signal pathways. In conclusion, vagus nerve modulates the inflammatory response by regulating CD4+ T cell differentiation in response to VMC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。