Salmonella Flagellin Activates NAIP/NLRC4 and Canonical NLRP3 Inflammasomes in Human Macrophages

沙门氏菌鞭毛蛋白激活人类巨噬细胞中的 NAIP/NLRC4 和典型 NLRP3 炎症小体

阅读:7
作者:Anna M Gram, John A Wright, Robert J Pickering, Nathaniel L Lam, Lee M Booty, Steve J Webster, Clare E Bryant

Abstract

Infection of human macrophages with Salmonella enterica serovar Typhimurium (S. Typhimurium) leads to inflammasome activation. Inflammasomes are multiprotein complexes facilitating caspase-1 activation and subsequent gasdermin D-mediated cell death and IL-1β and IL-18 cytokine release. The NAIP/NLRC4 inflammasome is activated by multiple bacterial protein ligands, including flagellin from the flagellum and the needle protein PrgI from the S. Typhimurium type III secretion system. In this study, we show that transfected ultrapure flagellin from S Typhimurium induced cell death and cytokine secretion in THP-1 cells and primary human monocyte-derived macrophages. In THP-1 cells, NAIP/NLRC4 and NLRP3 played redundant roles in inflammasome activation during infection with S. Typhimurium. Knockout of NAIP or NLRC4 in THP-1 cells revealed that flagellin, but not PrgI, now activated the NLRP3 inflammasome through a reactive oxygen species- and/or cathepsin-dependent mechanism that was independent of caspase-4/5 activity. In conclusion, our data suggest that NLRP3 can be activated by flagellin to act as a "safety net" to maintain inflammasome activation under conditions of suboptimal NAIP/NLRC4 activation, as observed in THP-1 cells, possibly explaining the redundant role of NLRP3 and NAIP/NLRC4 during S. Typhimurium infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。