Identifying and tracking proteins through the marine water column: insights into the inputs and preservation mechanisms of protein in sediments

通过海水柱识别和追踪蛋白质:深入了解沉积物中蛋白质的输入和保存机制

阅读:9
作者:Eli K Moore, Brook L Nunn, David R Goodlett, H Rodger Harvey

Abstract

Proteins generated during primary production represent an important fraction of marine organic nitrogen and carbon, and have the potential to provide organism-specific information in the environment. The Bering Sea is a highly productive system dominated by seasonal blooms and was used as a model system for algal proteins to be tracked through the water column and incorporated into detrital sedimentary material. Samples of suspended and sinking particles were collected at multiple depths along with surface sediments on the continental shelf and deeper basin of the Bering Sea. Modified standard proteomic preparations were used in conjunction with high pressure liquid chromatography-tandem mass spectrometry to identify the suite of proteins present and monitor changes in their distribution. In surface waters 207 proteins were identified, decreasing through the water column to 52 proteins identified in post-bloom shelf surface sediments and 24 proteins in deeper (3490 m) basin sediments. The vast majority of identified proteins in all samples were diatom in origin, reflecting their dominant contribution of biomass during the spring bloom. Identified proteins were predominantly from metabolic, binding/structural, and transport-related protein groups. Significant linear correlations were observed between the number of proteins identified and the concentration of total hydrolysable amino acids normalized to carbon and nitrogen. Organelle-bound, transmembrane, photosynthetic, and other proteins involved in light harvesting were preferentially retained during recycling. These findings suggest that organelle and membrane protection represent important mechanisms that enhance the preservation of protein during transport and incorporation into sediments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。