Evaluating the role of IL-11, a novel cytokine in the IL-6 family, in a mouse model of spinal cord injury

评估 IL-6 家族中的新型细胞因子 IL-11 在脊髓损伤小鼠模型中的作用

阅读:9
作者:Newton Cho, Dung H Nguyen, Kajana Satkunendrarajah, Donald R Branch, Michael G Fehlings

Background

Spinal cord injury (SCI) is a devastating condition with substantial functional and social morbidity. Previous research has established that the neuroinflammatory response plays a significant role in cord damage post-SCI. However, global immunosuppressive therapies have demonstrated mixed

Conclusions

This is the first study to address IL-11 in SCI. This study provides evidence that IL-11 signaling may not play as significant a role in SCI as other gp130 cytokines, which will ideally guide future therapy design and the signaling pathways those therapies target.

Methods

A validated clip-compression mouse model of SCI was used to assess for temporal changes in expression of IL-11 and its receptor, IL-11Rα, post-SCI. To elucidate the role of IL-II in the pathophysiology of SCI, we compared differences in locomotor recovery (Basso Mouse Score; CatWalk), electrophysiological spinal cord signaling, histopathology, and the acute inflammatory neutrophil response in IL-11Rα knockouts with littermate wild-type C57BL/6 mice.

Results

We found an increase in gene expression of IL-11 in the spinal cord to a peak at twenty-four hours post-SCI with increases in IL-11Rα gene expression, peaking at seven days post-SCI. In spite of clear changes in the temporal expression of both IL-11 and its receptor, we found that there were no significant differences in motor function, electrophysiological signaling, histopathology, or neutrophil infiltration into the spinal cord between wild-type and knockout mice. Conclusions: This is the first study to address IL-11 in SCI. This study provides evidence that IL-11 signaling may not play as significant a role in SCI as other gp130 cytokines, which will ideally guide future therapy design and the signaling pathways those therapies target.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。