Excitotoxic glutamate levels drive spinal cord ependymal stem cell proliferation and fate specification through CP-AMPAR signaling

兴奋毒性谷氨酸水平通过 CP-AMPAR 信号传导驱动脊髓室管膜干细胞增殖和命运决定

阅读:4
作者:Laureen D Hachem, James Hong, Alexander Velumian, Andrea J Mothe, Charles H Tator, Michael G Fehlings

Abstract

The adult spinal cord contains a population of ependymal-derived neural stem/progenitor cells (epNSPCs) that are normally quiescent, but are activated to proliferate, differentiate, and migrate after spinal cord injury. The mechanisms that regulate their response to injury cues, however, remain unknown. Here, we demonstrate that excitotoxic levels of glutamate promote the proliferation and astrocytic fate specification of adult spinal cord epNSPCs. We show that glutamate-mediated calcium influx through calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (CP-AMPARs) in concert with Notch signaling increases the proliferation of epNSPCs via pCREB, and induces astrocytic differentiation through Hes1 upregulation. Furthermore, the in vivo targeting of this pathway via positive modulation of AMPARs after spinal cord injury enhances epNSPC proliferation, astrogliogenesis, neurotrophic factor production and increases neuronal survival. Our study uncovers an important mechanism by which CP-AMPARs regulate the growth and phenotype of epNSPCs, which can be targeted therapeutically to harness the regenerative potential of these cells after injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。