Aim of study
ALI is characterized by acute respiratory inflammation, which remains a significant source of morbidity and mortality. The current study with the aim of determining the therapeutic the efficacy of E. bodinieri Vaniot on lipopolysaccharide-induced ALI, moreover uncovered the underlying gene-regulated framework, so E. bodinieri Vaniot might serve as functional food for adjuvant therapy or therapeutic agent. Materials and
Conclusion
E. bodinieri Vaniot ameliorated ALI thought regulating pyroptosis, inflammation, oxidative stress and macrophage polarization, as well as could be a promising source for therapeutic agent.
Methods
These potential pharmacological targets of E. bodinieri Vaniot against ALI were analyzed by multiple bioinformatics databases. E. bodinieri Vaniot methanol extract (EBE) was obtained by ultrasonic-assisted extraction method, and detected by UHPLC-ESI-HRMS/MS. These pyroptosis, inflammation and oxidative stress associated factors were measured using ELISA assay, western blotting, and histopathological examination to assess the effects of EBE. EcoTyper and immunofluorescence staining were employed to estimate macrophage polarization states in ALI lungs tissue.
Results
In ALI lung tissues, EBE treatment could increase B cell leukemia/lymphoma 2 (BCL2) to inhibit pyroptosis, downregulate prostaglandin-endoperoxide synthase 2 (PTGS2) to attenuate inflammation, upregulating NAD(P)H dehydrogenase, quinone 1 (NQO1) to alleviate oxidative stress and induce macrophage polarization toward the M2 phenotype.
