Elsholtzia bodinieri Vaniot ameliorated acute lung injury in mice by regulating pyroptosis, inflammation, oxidative stress and macrophage polarization

香薷通过调节细胞焦亡、炎症、氧化应激和巨噬细胞极化改善小鼠急性肺损伤

阅读:5
作者:Xiaoqian Jiang, Jin Sun, Shancheng Guo, Zhiye Zhao, Yuxu Chen, Jianxin Cao, Yaping Liu, Guiguang Cheng, Lei Tian, Ye Li

Aim of study

ALI is characterized by acute respiratory inflammation, which remains a significant source of morbidity and mortality. The current study with the aim of determining the therapeutic the efficacy of E. bodinieri Vaniot on lipopolysaccharide-induced ALI, moreover uncovered the underlying gene-regulated framework, so E. bodinieri Vaniot might serve as functional food for adjuvant therapy or therapeutic agent. Materials and

Conclusion

E. bodinieri Vaniot ameliorated ALI thought regulating pyroptosis, inflammation, oxidative stress and macrophage polarization, as well as could be a promising source for therapeutic agent.

Methods

These potential pharmacological targets of E. bodinieri Vaniot against ALI were analyzed by multiple bioinformatics databases. E. bodinieri Vaniot methanol extract (EBE) was obtained by ultrasonic-assisted extraction method, and detected by UHPLC-ESI-HRMS/MS. These pyroptosis, inflammation and oxidative stress associated factors were measured using ELISA assay, western blotting, and histopathological examination to assess the effects of EBE. EcoTyper and immunofluorescence staining were employed to estimate macrophage polarization states in ALI lungs tissue.

Results

In ALI lung tissues, EBE treatment could increase B cell leukemia/lymphoma 2 (BCL2) to inhibit pyroptosis, downregulate prostaglandin-endoperoxide synthase 2 (PTGS2) to attenuate inflammation, upregulating NAD(P)H dehydrogenase, quinone 1 (NQO1) to alleviate oxidative stress and induce macrophage polarization toward the M2 phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。