Targeting ataxia telangiectasia-mutated- and Rad3-related kinase (ATR) in PTEN-deficient breast cancers for personalized therapy

针对 PTEN 缺陷型乳腺癌中的毛细血管扩张性共济失调突变和 Rad3 相关激酶 (ATR) 进行个性化治疗

阅读:4
作者:Nouf Al-Subhi, Reem Ali, Tarek Abdel-Fatah, Paul M Moseley, Stephen Y T Chan, Andrew R Green, Ian O Ellis, Emad A Rakha, Srinivasan Madhusudan

Conclusion

ATR signalling adversely impact survival in PTEN-deficient breast cancers. ATR inhibition is synthetically lethal in PTEN-deficient TNBC cells.

Methods

PTEN, ATR and pCHK1Ser345 protein level was evaluated in 1650 human breast cancers. ATR blockade by VE-821 was investigated in PTEN-proficient- (MDA-MB-231) and PTEN-deficient (BT-549, MDA-MB-468) TNBC cell lines. Functional studies included DNA repair expression profiling, MTS cell-proliferation assay, FACS (cell cycle progression & γH2AX accumulation) and FITC-annexin V flow cytometry analysis.

Purpose

Phosphate and tensin homolog (PTEN), a negative regulator of PI3K signaling, is involved in DNA repair. ATR is a key sensor of DNA damage and replication stress. We evaluated whether ATR signaling has clinical significance and could be targeted by synthetic lethality in PTEN-deficient triple-negative breast cancer (TNBC).

Results

Low nuclear PTEN was associated with higher grade, pleomorphism, de-differentiation, higher mitotic index, larger tumour size, ER negativity, and shorter survival (p values < 0.05). In tumours with low nuclear PTEN, high ATR and/or high pCHK1ser345 level was also linked to higher grade, larger tumour size and poor survival (all p values < 0.05). VE-821 was selectively toxic in PTEN-deficient TNBC cells and resulted in accumulation of double-strand DNA breaks, cell cycle arrest, and increased apoptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。